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The one-dimensional elementary cellular automaton "Rule 22" is studied by 
means of Monte Carlo simulation on the dedicated K2 high-speed computer. If 
one considers random initialization with probability p for "one"-initialization 
per site, it is shown that the system behaves like a normal one-dimensional 
statistical ensemble with critical points at p = 0 and p = 1. Critical slowing down 
is exhibited, with a dynamical exponent of 1.0. The standard initialization of 
p = 0.5 is too far away from the critical point to allow similar observations. 
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computer; critical properties. 

1. I N T R O D U C T I O N  

One-d imens iona l  cellular au toma ta  have recently been studied 

intensely. (1-5) Some nontr iv ia l  statistical properties have been exhibi tedJ 6) 

In  particular,  the so-called "Rule 22" a u t o m a t o n  was found to be the most  

interest ing one. However,  it has no t  been possible to extract critical 

exponents  from the data  measured so far. It is the purpose of the present 
paper  to establish a firmer correspondence between the behavior  of one- 

d imensional  cellular au toma ta  and  other statistical ensembles in one 
dimension,  as discussed, e.g., by Stauffer (Ref. 7, Appendix) ,  taken here as a 
reference for the "normal"  behavior  of one-d imens ional  statistical systems. 

The "Rule 22" a u t o m a t o n  is const i tuted by a circular chain of N sites, 
where at each site a single bit of data  is located, i.e., a b inary  variable with 
value equal to either zero or unity. We int roduce a variable parameter  

~KONTRON Elektronik, 8057 Eching, West-Germany, and Minnesota Supercomputer 
Institute and School of Physics and Astronomy, University of Minnesota, Minneapolis, 
Minnesota. 

1255 

0022-4715/88/0300-1255506.00/0 �9 1988 Plenum Publishing Corporation 



1256 Zabolitzky 

0 ~< p ~< 1, which specifies the initialization of the system at time t = 0. The 
parameter p gives the probability for each site independently to assume the 
value one; otherwise, the site assumes the value zero. Time evolution is 
given by "Rule 22": whenever the sum of a site and its two direct neighbors 
is equal to one, that site assumes a value of one in the next time 
step; otherwise, it assumes zero. The updating process is carried out 
simultaneously for all N sites at each step in discrete time. Grassberger (6) 
found highly unusual behavior for p = 0.5 in Rule 22. 

As a paradigm, I use the analogy to a magnetic system, like the Q2R 
cellular automaton approximating an Ising spin system. ~8'9) In that case the 
initialization probability plays a role like the temperature in real magnetic 
systems, i.e., there exists a critical probability Pc which exhibits all the 
properties of a critical parameter. I will show that the same holds true for 
the one-dimensional automata studied here. However, the critical point is 
at p = 0, as is normal for one-dimensional systems. (7) The point p = 1 is 
similar to p = 0, since, after one iteration beginning from p = 1 -  ~, one 
obtains a state similar to the p = 82 initialization (probability of finding two 
zeros out of three sites). 

2. S I M U L A T I O N A L  T E C H N I Q U E S  

In order to avoid the necessity to compute finite-size corrections in the 
statistical analysis of the Monte Carlo data taken, I use a large system of 
N =  64,000 sites, stored in 4000 16-bit machine words of the K2 special- 
purpose microprogrammed array processor. (1~ With a system size as large 
as this, finite-size corrections do not appear to the accuracy of the data 
obtained in the present simulations. As a function of time (number of steps 
taken), I compute the average number of sites with value one, 

m(t)  = ~ s~(t)/N, 0 <~ m <~ 1 
i 

On the K2 processor the update algorithm, including the bit count 
operation for the computation of the "magnetization" m, occurs at a rate of 
30 million updates per second. Initial configurations are set according to 
the specified probability p by drawing a random number r, 0 ~< r ~< 1, and 
setting the site to one if and only if r ~< p. It is extremely critical that the 
random number generator used does not exhibit any correlations and be 
of good statistical quality. Otherwise, the system may easily lock into 
persistent metastable states, resulting in rather inaccurate results for 
finite computational time. I used the generator RAN1 of Ref. 11 after 
experiencing severe problems with a number of other generators. 
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For each probability p, from 400 to 1500 independent simulations 
were carried out and averaged over, each one run for 30,000 time steps. 
The total CPU time used therefore is on the order of several hundred 
hours. 

3. RESULTS  A N D  D I S C U S S I O N  

A typical time evolution is shown in Fig. 1 for the case of p = 0.02, 
averaged over 750 samples. The decadic logarithm of the absolute 
deviation of the magnetization m(t)  from the final steady-state equilibrium 
value, m(oe)=0.35096,  (6) is shown. We observe a region of approximately 
exponential decay, followed by  statistical fluctuations. The rapid 
oscillations of this value within the exponential regime are not statistical, 
but are a reproducible consequence of the Rule22 time evolution 
procedure, as was already evident from the analytical results of Ref. 6. The 
statistical errors of the magnetizations given are of the order of the 
statistical fluctuations within the equilibrium regime. The equilibrium 
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Fig. 1. Deviation of time-dependent magnetization re(t) from equilibrium value m(c~), 
decadic logarithm of absolute value, for p = 0.02 initialization, as a function of time. 
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magnetization m(oo) does not depend upon the initialization probability p 
and coincides with the one found in Ref. 6 for all p calculated. 

In order to extract more quantitative information, Fig. 2 shows a 
gliding average of the same data, 

j = i + 2  

m,v( t i )=  Y' m(tj)/5 
j = i  2 

The oscillations are significantly reduced, and extraction of the decay 
constant is possible, assuming the formal ansatz 

Im( t ) - m( oo )l oC e - a t  

depicted as the straight line. Because of the residual fluctuations, it is quite 
evident that higher order terms cannot be extracted. Consequently, the 
extracted decay constant is associated with a rather large possible error. 
The very same procedure can be carried out for any arbitrary initialization 
probability p chosen, resulting in Table I. It is seen clearly that for small p, 
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Fig. 2. Same as Fig. 1, but  with gliding average over five t ime steps. The  s t ra ight  line is the 
best exponent ia l  fit to the da ta  in the range t = 100-500. 
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Table I. Decay Constants a Extracted for Various 
Initialization Probabilit ies p 

p a p a 

0.0002 0.000026(8) 0.1 0.055(6) 
0.0005 0.00018(5) 0.2 0.077(8) 
0.001 0.00025(5) 0.3 0.14(2) 
0.002 0.0008(2) 0.4 0.13(2) 
0.005 0.0015(3) 0.5 0.13(2) 
0.01 0.0074(8) 0.6 0.16(2) 
0.02 0.013(2) 0.7 0.086(9) 
0.05 0.034(4) 0.8 0.054(6) 

0.9 0.019(2) 
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Fig. 3. Decadic logarithm of decay constant a as a function of decadic logarithm of 
initialization probability p. The straight line indicates the best fit; see text. 
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the decay constant is linear in p. This result--as well as the individual 
decay constants themselves--does not depend upon the width of the 
gliding average taken to the accuracy studied here. 

Previous studies (6) limited themselves to the special case p = 0.5. It is 
quite obvious now that the very fast decay at this value of p, coupled with 
the significant oscillations, does not allow one to extract meaningful quan- 
titative information. Essential information is restricted to the small-p 
regime. Approaching p = 0, the decay becomes arbitrarily slow, indicating 
the presence of the critical point p = 0. 

Figure 3 shows a log-log plot of the data in Table I. It is seen that the 
behavior approaching p = 0 is indeed linear (slope unity), with a coefficient 
of 0.44(5), i.e., dynamical critical exponent of unity, 

a(p)=O.44(5)p 

4. STRUCTURE OF EQUIL IBRIUM STATE 

Characteristic structural elements of the equilibrium state are rather 
long runs of zeros .(6) In analogy to percolation theory, (7) I define a cluster 
size distribution 

n, = average number of clusters [-runs] of s zeros 

per cluster site, with the sum rule (normalization condition) 

~Sns+m(~)= 1 
S 

For independent sites, i.e., uncorrelated (percolation) system of the same 
magnetization as the rule 22 equilibrium state, this cluster size distribution 
follows (7) 

ns oc [- 1 - m ( ~ ) ] ~ = 0.64904s 

The average cluster distribution obtained from 1340 independent samples 
of the N = 30,000 system in equilibrium (after more than 10,000 time steps, 
starting from p = 0.5) is shown in Fig. 4. The rather accurate best fit to the 
data for large s is 

nsoc0.75(3) s 

i.e., there are many more large clusters of zeros due to correlation effects 
than in the uncorrelated system. I suggest that it might be possible to find a 
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Fig. 4. Cluster size distribution for runs of zeros in equilibrium state, natural logarithm of 
cluster frequency versus cluster size. 

p r o o f  to the conjec ture  tha t  this c o n s t a n t  is equal  to 3/4, ind ica t ing  some 
yet h idden s implici ty  in the s t ructure  of  the equi l ib r ium state of the Rule 22 

a u toma ton .  
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